scRNA Reference
- sc_reference.construct_sc_ref(adata_sc: AnnData, key_type: str)[source]
Construct the scRNA reference from scRNA data.
- Parameters:
adata_sc – scRNA data.
key_type – The key that is used to extract cell type information from adata_sc.obs.
- Returns:
scRNA reference. Numpy assay with dimension n_type*n_gene
- sc_reference.initialization(adata_sc: AnnData, adata_st: AnnData, min_genes: int = 200, min_cells: int = 200, min_std: float = 20, normalize_st=None, filtering=True, verbose=0)[source]
Filter single cell data and spatial data, and normalize the data to count per million (CPM).
- Parameters:
adata_sc (anndata.AnnData) – Single cell data.
adata_st (anndata.AnnData) – Spatial data.
min_genes (int) – Minimum number of genes expressed required for a cell to pass filtering.
min_cells (int) – Minimum number of cells expressed required for a gene to pass filtering.
min_std (float) – Minimum std of counts required for a gene to pass filtering after CPM normalization.
normalize_st (bool) – If False, spatial data is also normalized to one million. Otherwise, normalized_st should be np.ndarray, representing the number of cells in each spot, and the expression of each spot is normalized to n_cell million.
filtering (bool) – Whether to filter the genes in adata_sc.
verbose (int) – Verbose mode.
- sc_reference.marker_selection(adata_sc: AnnData, key_type: str, threshold_cover=0.6, threshold_p=0.1, threshold_fold=1.5, n_select=40, verbose=0, return_dict=False, q=0)[source]
Find marker genes based on pairwise ratio test.
- Parameters:
adata_sc – scRNA data (Anndata).
key_type – The key that is used to extract cell type information from adata_sc.obs.
threshold_cover – Minimum proportion of non-zero reads of a marker gene in assigned cell type.
threshold_p – Maximum p-value for a gene to be marker gene.
threshold_fold – Minimum fold change for a gene to be marker gene.
n_select – Number of marker genes selected for each cell type.
verbose – 0: silent. 1: print the number of marker genes of each cell type.
return_dict – If true, return a dictionary of marker genes, where the keys are the name of the cell types.
q – Quantile of the fold-change that we considered.
- Returns:
List of the marker genes or a dictionary of marker genes, where the keys are the name of the cell types.
- sc_reference.plot_heatmap(adata_sc, key_type, fig_size=(10, 4), dpi=300, save=False, out_dir='')[source]
Plot the heatmap of the mean expression.
- Parameters:
adata_sc – scRNA data (Anndata).
key_type – The key that is used to extract cell type information from adata_sc.obs.
fig_size – Initial size of the figure.
dpi – Dots per inch (DPI) of the figure.
save – Whether to save the heatmap.
out_dir – Output directory.
- sc_reference.plot_sc_ref(sc_ref, type_list, fig_size=(10, 4), dpi=300)[source]
Plot the heatmap of the single cell reference
- Parameters:
sc_ref – scRNA reference. np.ndarray n_type*n_gene.
type_list – List of the cell types.
fig_size – Initial size of the figure.
dpi – Dots per inch (DPI) of the figure.