Normalize and log-transform the sparse eset object
normalizeSparseEset.Rd
This function is used to normalize and log-transform the sparse eset object. The default method is "log21p".
Usage
normalizeSparseEset(
input_eset,
scale_factor = 1e+06,
do.logTransform = TRUE,
log_base = 2,
log_pseudoCount = 1
)
Arguments
- input_eset
The sparse eset object for normalization
- scale_factor
Numeric, the library size to normalize to. Default: 1000000.
- do.logTransform
Logical, whether to do log-transformation. Default:
TRUE
.- log_base
Numeric, the base of log-transformation. Usually 2, exp(1) or 10. Default: 2.
- log_pseudoCount
Numeric, the pseudo count to add to avoid "
-Inf
" in log-transformation. Default: 1.
Examples
data("pbmc14k_rawCount")
pbmc14k_raw.eset <- createSparseEset(input_matrix = pbmc14k_rawCount, projectID = "PBMC14k", addMetaData = TRUE)
#> Creating sparse eset from the input_matrix ...
#> Adding meta data based on input_matrix ...
#> Done! The sparse eset has been generated: 17986 genes, 14000 cells.
pbmc14k_filtered.eset <- filterSparseEset(pbmc14k_raw.eset, filter_mode = "auto", filter_type = "both")
#> Checking the availability of the 5 metrics ('nCell', 'nUMI', 'nFeature', 'pctMito', 'pctSpikeIn') used for filtration ...
#> Checking passed! All 5 metrics are available.
#> Filtration is done!
#> Filtration Summary:
#> 8846/17986 genes passed!
#> 13605/14000 cells passed!
#>
#> For more details:
#> Gene filtration statistics:
#> Metrics nCell
#> Cutoff_Low 70
#> Cutoff_High Inf
#> Gene_total 17986
#> Gene_passed 8846(49.18%)
#> Gene_failed 9140(50.82%)
#>
#> Cell filtration statistics:
#> Metrics nUMI nFeature pctMito pctSpikeIn Combined
#> Cutoff_Low 458 221 0 0 NA
#> Cutoff_High 3694 Inf 0.0408 0.0000 NA
#> Cell_total 14000 14000 14000 14000 14000
#> Cell_passed 13826(98.76%) 14000(100.00%) 13778(98.41%) 14000(100.00%) 13605(97.18%)
#> Cell_failed 174(1.24%) 0(0.00%) 222(1.59%) 0(0.00%) 395(2.82%)
pbmc14k_log2cpm.eset <- normalizeSparseEset(pbmc14k_filtered.eset,
scale_factor = 1000000,
log_base = 2,
log_pseudoCount = 1)
#> Done! The data matrix of eset has been normalized and log-transformed!
#> The returned eset contains: 8846 genes, 13605 cells.